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Abs t rac t  

This paper exploits the axioms and general mathematical structure of a new theory of 
elementary matter, thus far developed in two earlier papers (Sachs, 1971b, c). It is shown 
here, in an explicit fashion, how the exact form of this theory approaches that of quantum 
mechanics of a 'many-particle' system that interacts electromagnetically. The form of the 
mathematical expression of quantum mechanics of a many-particle system is found to be 
a linear approximation for the nonlinear (deterministic) field theory of this author's 
approach. The latter approximation is valid only when the components of the (asserted) 
closed system are sufficiently weakly coupled so that it appears as a many-particle system. 
The physical equivalent of the Pauli exclusion principle is derived in this paper as an exact 
feature of the theory, which is, in fact, sensitive to its closed and nonlinear features. It 
is then shown how the Fermi-Dirac statistics in particle physics follows from the present 
nonlinear theory only in a linear approximation. 

1. Introduct ion 

The mathemat i ca l  s t ructure  of  the most  primitive representation o f  the 
matter  field equations was demonstrated in Part  II  (Sachs, 1971c) in terms 
o f  a 2-component  spinor formalism. This formalism, in turn, implied an 
equivalent representation in terms o f  a positive-definite mass field [Part II,  
equations (2.20), (2.26)] that  couples time-reversed spinor variables. 

The coupling term in these equations that  yields their nonlinear structure 
was denoted by 

~ ( ~ . ) ,  7(2) . . . .  ~ . - 1 )  ~.+~) . . . .  ~/(.)) ~.)  

for the ith coupled field (~/"), X(~ If, now, this coupling should b e c o m e  
sufficiently weak so that we can a p p r o x i m a t e i t  by zero, then the coupled field 
equations approach  the form o f  a set o f  separated equations:  

% Oi ~ ~")(x3 + 7~") X")(xt) = 0 
(1.1) 

~ 0~ X")(x3 + ;~") ~")(x3 = 0 

(O~u - O/Oxi~') (i = 1 ,2  . . . .  n) 

Here, we have expressed each & t h e  field solutions 07 (~), X ( ' )  as a function o f  
the four  space-time parameters x~ (for each of  the field solutions) since the 
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vanishing of the coupling term, J ~ " ) ,  allows one to consider each the 
resulting uncoupled equations, one at a time. It is then perhaps more 
convenient to express the uncoupled equations (1.1) in terms of the four- 
component spinor formalism--since it is the part of J~  which destroys 
reflection symmetry that makes the more general form (in terms of  
2-component spinors) more useful. Thus, according to the latter structure 
[Part II, equation (2.6)], equation (1.1) takes the form: 

(Tu O,~' + A (o) r = 0 (1.2) 

(i = 1,2, . . .  n) (a," = O/ax, u) 
where the Dirac matrices Yu were defined in the previous paper. 

Equations (1.1) and (1.2) are linear differential equations. That is to say, 
the solutions of these equations are basis functions of operators that are 
independent of the solutions themselves. Nevertheless, it is important in this 
theory that since the coupling term ~r is never really independent of the field 
solution, even though it can be arbitrarily close to this situation, equations 
(1.1) and (1.2) cannot be considered as more than a linear approximation 
for nonlinear field equations. 

Since each of the n spin or equations (1.2) is a linear differential equation, 
the sum of all n of these equations can be taken, yielding the following 
equivalent single field equation: 

[j=~l'YlaOfu'~- ~(J)]l[-'f(r162162 (1.3) 

The solution of this equation, 7 -t, is a limiting form of a functional which, 
generally, represents a connective relation between the members of the set 
of  solutions {r of the coupled nonlinear equations. In this linear 
limit, T has the form 

= ]-[ ~b(k)(x~) (1.4) 
k 

The form of the solution (1.4) of equation (1.3) is, of course, only one out 
of n ! physically equivalent solutions of this equation, since the solution is 
independent of the order of factors, and there are n t permutations of this 
order. 

Because the differential equations for each of the n equations (1.2) are 
functionally identical, the complete set of  solutions of  each of these 
equations must span the same function space. Further, the required square 
integrability of the solutions of these equations implies that they must have 
the eigenfunetion structure of ordinary linear quantum mechanics. It should 
be noted that the imposition of square integrability, i.e. 

f~br r = no. dr finite 

is generally required by this theory, independent of whether or not the linear 
approximation is being used. The reason is based on the idea of 'conservation 



A NEW THEORY OF ELEMENTARY MATTER 37 

of interaction' as a conceptual ingredient of the theory (see Part I, Sachs, 
1971b). 

The eigenfunction structure of the equations (1.2) then leads to the 
prediction of discreteness in the values of the (limiting forms of) the physical 
properties of the material system described. 

With the limiting form of these equations in terms of eigenfunction 
solutions, the indices (k), for each of the field solutions, then stand for the 
set of quantum numbers (ink) that relate to the elements of the Hilbert space 
of solutions of each of these equations. If we now take account of the fact 
that the order of factors in the solution (1.4) does not affect the predicted 
properties of the system (when this asymptotic form of the nonlinear theory 
is accurate), we may take a linear combination of all permutations of such 
product functions, with the assumption that each of the terms in this 
combination has equal weighting in describing the total interaction. The 
general solution of equation (1.3) then takes the form: 

n! 
~F= 1 v'n! ~ exp(iap) lff  k ~b''k)(xk) (1.5) 

P=I 

where ~, is a phase that is associated with the Pth permutation in the order 
of these product functions. Its value will be determined later on from the 
exact form of the function which fully exploits the nonlinear structure of the 
equations. 

2. Coupling to an External Potential 

The uncoupling of the matter field equations [Part II, (2.26)] was based on 
the assumption that each link, Jk ~ b~k), can be neglected in each of these 
equations, as compared with the other terms. This is equivalent to the 
requirement that the energy-momentum transfer within the components of 
the closed system is much smaller than the 'intrinsic energy' associated with 
each of these components. The latter is in terms of the free energy- 
momentum, expressed in terms of the operator Yu 0k ", and the 'rest energy', 
represented with the term )t ~). But the limit ~r ~ b~k) ~ 0 is really not required 
to achieve this uncoupling. It is only necessary that the following limit should 
be approached 

-+ f(x ) 

wheref(xk) is an integrable function of the coordinates, but expressible in a 
form that is not explicitly a function of the field solutions (~b m, ~b ~z) . . . .  
~b r ~b~k+l),.., ~b~")) that couple to ~b ~k). As we have seen earlier, this limit 
is analogous to the 'independent particle model' of nuclear theory, where 
f(xk) plays the role of a background potential (averaged over all nucleons 
except the kth one) that acts on the kth nucleon. 

It should be emphasized that even with the linear approximation that has 
been discussed, the manifestations of the nonlinearity of the theory still 
appear in the predictions for observables. For example, thefinite width for 



38 MENDEL SACHS 

the measured values of all observables (rather than the zero width predicted 
by actual eigenvalue theory) is a manifestation of the nonlinear features of 
the equations that involve the coupling of matter. That the width of the 
measured 'peaked' values of the properties of matter in the microscopic 
domain is never really zero, in principle, is, of course, in agreement with the 
actual observations. Even in the microdomain, the set of measured values 
of any physical property of a realistic system will always have the feature, 
that no matter how closely any two values of some property can be deter- 
mined, there is always, in principle, a potentially measurable set of values 
(of this property) in between them. 

The quantum theory interprets this 'natural width' in terms of intrinsically 
probabilistic notions (as incorporated in the Heisenberg uncertainty prin- 
ciple). On the other hand, the present theory leads directly to the natural 
width from the (nonlinear) mathematical terms in the field equations that 
have to do with the coupling of any given matter field component to its 
environment. Where the two theories should differ most strikingly is in the 
high energy limit, since the quantum theory rests on the axiom of linearity-- 
under all experimental conditions--while this theory implies a continuity in 
the measured values of the properties of matter as a feature of the nonlinear 
aspects of the basic equations. 

3. Electrodynamics in Special Relativity 

Let us now consider the specific coupling of matter fields that is associated 
with the motion of electrically charged matter. This is the subject of electro- 
dynamics. We have seen in the preceding section that the most primitive 
form of the electromagnetic field equations in special relativity is in terms 
of a 2-component spinor representation of the underlying (Poincarr) group. 
[Part II, equation (1.5)]. These field equations, in a generally covariant 
form (Sachs, 1964a), along with the accompanying field equations in the 
matter variables and the metric field variables (in general relativity) 
correspond to an extremum of the general action functional 

A = A o + A m + A z + A e  

The portion of A that yields the spinor form [Part II, equation (1.5)] of 
the electromagnetic equations (in special relativity) is 

I f  2 } Am= igm ~ a~J (eua"~o~-2Y~)+h .c ,  d4x (3.1) 
~ 1  

when it is varied with respect to the spinor field variables ~%, ~%t and their 
first derivatives in space and time. gu is a real constant that necessarily 
appears in the Lagrangian formalism. It cancels in the resulting field 
equations which in the Lagrangian form is the spinor equation 

a ~ / a < p j  - a , , [a~ /a (a .  ~E) ]  = o 
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and its conjugate equation. The coefficients a~ are the relative phases of the 
spinor equations for ~ = 1 and 2, as they appear in the Lagrangian density. 
This will be found in the analysis of electron-positron pairs [to be carried 
out in Part IV (Sachs, 1971d)] to have the form (-1)% 

Since the dimension of the integrand in equation (3.1) is energy density per 
length, the fundamental constant gM must have the dimension of length. It 
is an additional universal constant that necessarily appears in this theory as 
a consequence of the factorization of Maxwell's equations into a spinor 
form. It will appear in an interaction that determines the matter field 
solutions. Its magnitude will be found later on (in Part IV). 

The action functional AD is that part of A that contributes to the structure 
of the matter equations [Part II, equation (2.26)]. In special relativity, it has 
the form 

[ih  f (% a. + ;w,) + a, + + b.c.] X 

(3.2) 

for each of the matter constituents ( j)  of the closed system. In terms of the 
4-component bispinor formulation, AD then has the following form for the 
entire closed system: 

AD=[ihe ~ f CU'(x)(,t, Ou + Au))r h.c.] d4x (3.3) 

The number (lie) is, again, a constant that necessarily appears in the 
Lagrangian formalism. Its magnitude is determined from the conserved 
properties of a microscopic system which is described in terms of the spinor 
field variables Cu) (or 0/u), Xu)). It is at this point where Planck's constant 
is introduced into the theory. (Henceforth we shall use units with h = c = 1.) 

The action functional AL in A is chosen, for empirical reasons, to give the 
observed Lorentz force between interacting charged particle currents, in 
electrodynamics. In special relativity theory, with the bispinor formulation, 
it has the following form: 

AL= ~ e(')e(k) f ~u)yv,&U)(x) f ~(k)'yur 
. l ,k 

(J*~) (3.4) 

where, in this contribution to A, e u) e (k) = +e 2 is the fundamental constant. 
S(x - x') is the Green's function for D'Alembert's equation, i.e. 

FqS(x - x') = 4rr3(xU - xU) (3.5) 

The action function AL is the same as the conventional one, (that yields the 
Lorentz force) except for the exclusion of the self-energy terms in the 
summation (i.e. the terms wi th j  = k). These are excluded here as a require- 
ment of the conceptual basis of the theory (as discussed in Part I). 

It is well known that the solutions of equation (3.5) are not unique--there 
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are the Green's function solutions Sadv and Sret, corresponding to the 
advanced and retarded potentials of electromagnetic theory; and any linear 
combination of these is also a valid solution. The conventional approach to 
electrodynamics takes only the retarded Green's function as applicable 
because of the further restriction of 'causality'. The latter restriction, 
however, is imposed because of the interpretation of the matter field 
solutions in terms of particles--one of the interacting particles (j)  being the 
'emitter' and the other (k) the 'absorber'. On the other hand, the elementary 
interaction approach considers 'emitter' and 'absorber' as components of a 
single closed system--that is in principle without separable, distinguishable 
parts. With this approach, there are not separate times. There is only one 
space-time for the description of the entire closed system. The causality 
argument of the conventional particle theory does not then apply here. 
Instead, this theory requires that there should be no difference in the 
description of the elementary interaction should the labels 'emitter' and 
'absorber' be interchanged. Thus, if 'emitter-absorber' is equivalent to 
'absorber-emitter', it follows that the Green's function in AL must necessarily 
be symmetric in the retarded and advanced terms, i.e. 

S(x - x ' )  = � 8 9  + 

1 
- 2Jr - r '  [ {8 [ ( t  - t ' )  - I r .  r'  i] + 3 [ ( t  - t ' )  + ]r - r'  1]} ( 3 . 6 )  

The action functional Ae is that part of A that yields the field equations 
in the metric field q~(x)--leading to a form that incorporates Einstein's 
gravitational field. This part of the analysis is not pertinent to our present 
discussion of electrodynamics in special relativity, except that, as we have 
pointed out earlier, the Pauli matrices e~ (and in the bispinor formulation, 
the Dirac matrices which are constructed from ~ )  as they appear in the 
matter field equations, are an asymptotic limit (for sufficiently small 
space-time separations) of the fields q~(x). The latter are the solutions of a 
well-defined set of differential equations (Sachs, 1967b). 

The variation of the total action functional, A, with respect to the matter 
field spinor variables, then yields the matter field equations, including the 
effect of the electrodynamic interaction. The matter field spinor variables 
appear in Ao, AL, and AM. In AN they are implicit in the source field Y'~, 
[equation (3.1)]. The latter have the following form in special relativity, in 
terms of the bispinor variables: 

Y?)  = e (J) ~(J) F~ 5b (J) = 4rr" (J) [~(J) (-Yo + iy3) ~('/)'~ -o) [~(J) -/"1(1) ~(J)'~ 
te ~ ~'"(iy,-y2)~b'" ) - e ~ , , ,  Fl(2)~b"') 

(3.7) 

4rrie,,)fCt' ( - y , _ y 2 ) ~ i ) ~  -{')Fa l '"  yg) e~J) q~o) Fz r -O) i O) 
= = -_- e~J) (~b~j, F2((2)) ~b~ , 
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In these equations, the factor e (J) is inserted only for convenience=noting 
that it is 

e(J) e(k) = :t:e 2 

that is the fundamental constant, rather than e eJ~. 
It is important to recall at this point that the 2-component spinor 

variables Y~ transform in special relativity theory according to Part II, 
equation 1.6b and that these transformations are not form-invariant with 
respect to the vector variables jv (or ~Vv ~b) of the standard representation 
of the theory. That this does not effect the predicted correspondence with 
conventional observables was discussed earlier in Part II. 

If  we now use the forms (3.1), (3.3) and (3.4) for the appropriate parts of 
the action functional and then vary the sum of these contributions with 
respect to the bispinor fields ~r (for thej th constituent matter component 
of the closed system) the following coupled field equations result: 

(yt, a~ - ~ + ,W~) ~b~J~(x) = 0 ( j =  1 ,2 , . . .n)  (3.8) 

where 

,.,r = eJ ~u k~=j {e(k) f ~(k) ~ r S(x -- x') d4 x' 
(k ~ j) 

(3.9) 
+ igM ( - 1 )  - 

0C=I / 

~0 2 . / ' ~  - ~ ~  (1)/'~ (1) + ~o~ ~ (2) r~  (2) 

It is an important feature of this theory that, in its general form, all coupled 
fields r are mapped in the same space-time x. The matrices ['~ are the 
combinations of Dirac matrices which are defined in equation (3.7). Recall 
that ~k) depends on the factor e r so that the products of terms in equation 
(3.9) are proportional to e ~) e Ck) = l e  2. 

The first term in equation (3.9) is the conventional interaction that is 
used in quantum electrodynamics--except for (a) the use of the Green's 
function (3.6) which is symmetric in the retarded and advanced terms 
(rather than only using the retarded term), and (b) the automatic rejection 
of self-energy terms in accordance with the axioms of this theory. 

The second term, which depends on the universal length gM, is a particular 
combination of the invariants ~ t  ]z~ [Part II, equation (1.9)] that have no 
counterpart in the conventional Maxwell formulation of electromagnetism. 
Note that this interaction is not an adhoc insertion, it is an extra contribution 
to the electromagnetic interaction resulting from a bona fide generalization 
of the theory which occurs when the vector representation of the theory is 
factorized into its irreducible spinor form. We will see later on that this 
term predicts the Lamb splitting in the fine structure of hydrogen, in 
agreement with the data. The magnitude of gM will be determined from a 
comparison of the theoretical prediction with one of the Lamb splittings. 



42 MENDEL SACHS 

With this value, it will be found that the other Lamb splittings are in close 
agreement with the data. The justification for inserting a~ = (-1) ~ in 
equation (3.9) will come from the analysis of electron-positron pairs (in the 
following paper in this series). 

It is interesting to note that the appearance of the generalized electro- 
magnetic interaction (3.9) and its need to explain some physical phenomena, 
refutes the recently proclaimed 'principle of minimal electromagnetic 
coupling'. 

4. The Hartree-Foek Approximation 

Thus far, we have seen how the coupled nonlinear field equations of the 
elementary interaction field theory reduce to the structure of the quantum 
mechanical equations for a single particle system---either as a free particle 
or subjected to an external potential. It is now important to extend the 
analysis to the case of the 'many-body interaction' which could be applied, 
e.g. to the many-electron atom. At least from the empirical point of view, 
the spectra of such atoms are quite accurately described with the standard 
quantum mechanical formalism, with the Hartree and Hartree-Fock 
models, utilizing variational methods of calculation. It will be shown in this 
section that the nonlinear formalism of this theory reduces precisely to the 
Hartree formalism, when the nonrelativistic limit is taken. It will then be 
shown that the physical implications of the Pauli principle can be derived as 
a consequence of the exact formal structure of the field equations of this 
theory. The incorporation of this result with the Hartree approximation, 
in the non-relativistic limit, then leads naturally to the Hartree-Fock 
approximation for many-body systems that are in terms of spinor fields. 

Taking the nonrelativistic limit of the uncoupled spinor field equations 
(1.2), the time part of each &the 4-vectors xj then collapse into a common 
time coordinate, i.e. 

v / c - + O  ~ x j  = (rj, tj) -+ (rj, t) 

and, at the same time, the bispinor solutions ~b~J), in the Dirac structure of 
the equations, approach the Schr~Sdinger solutions ~s. 

If one now wishes to improve the solutions of the uncoupled equations 
(1.2), when they are expressed nonrelativistically, the coupling functional 
may be re-introduced by inserting the nonrelativistic form of ~ into 
equation (3.8)--recalling that in this limit only, all field solutions may be 
described in their own spaces and a common time, i.e. ~b<J)(x) ~ r t). 
The latter coupling term is then treated as a perturbation on the solutions 
~b(rj, t) of the uncoupled equations (1.2). In this way, the nonlinear, 
relativistically covariant formalism that we started with [equation (3.8)] 
reduces to the usual Hartree formalism. This result will now be demon- 
strated. 

The nonrelativistic limit of the Dirac bispinor solutions are the 
Schr~dinger solutions ~b s. The added (generalized) part of the interaction 
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term (3.9) entails the mixing of the four components of ~b ~s). (This will be 
shown in an explicit example in the analysis of the hydrogen spectrum in 
Part IV.) That is, the latter interaction term is expressed in terms of a 
nondiagonal operator. It then follows that in the Schr/Sdinger limit, where 
three out of the four components of the Dirac solution may be neglected, 
the latter interaction term becomes ineffective. 

Thus, the only part of the electrodynamic interaction that remains to 
perturb the (otherwise uncoupled) matter fields (in the Schr~dinger limit) 
is the following nonrelativistic limit of the first part of Js:  

Js(rs, t)=e~S' ~ etk) f ~bs*(rk, t)r t )S(r j--r~)drk (4.1) 
(k  , j )  

When all time coordinates are equated, the Green's function (3.6) takes the 
following form 

S(rs - rk) = 1/47firs -- rkl (4.2) 

With this substitution, the nonrelativistic form of equation (3.8) is expressed 
as follows: 

2m ~J) Vj2 + e~S) k=l 
(k , j )  

f ~bs*(rk't)~bs(rk't)" ] ' "  
4~1~ ~ ark} ~s(r s, t) = iOt Cs(rs, t) 

(4.3) 
( j =  1,2 . . . .  ,n) 

In the usual application of equation (4.3) to the properties of many- 
electron atoms, the solutions refer to 'stationary states'. In this case, the 
solutions factor into a spatial and temporal part: 

~bs(rk, t) --> us(rk) exp ( - iEd )  

With this substitution, equation (4.3) takes the form 

1 Vj 2 + e~S) 
- -  ~ m O )  . 

f us*(rk)us(rk), ] . . e tk) - -  - - -  ark~ us[rs) = E s us(rs) 
,~$~) 4fir  J - r~] J 

( j=  1,2,...,n) 

(4.3') 

These are a set of n coupled differential equations for the n-particle system. 
Each set of solutions (there is an infinite number of such sets (u(rl), 
u(r2) . . . .  , u(r,))a for an n-body system, corresponding to the eigenvalues 
(Eq,...) for the various values of energy of the system. The formalism (4.3')--- 
a set of n coupled wave equations in the solutions (U(rl), u(rz) . . . .  )--are the 
expression of the Hartree theory. It has been applied quite successfully to 
the prediction of properties of some many-body systems. In particular, the 
application of Hylleraas' variational method (Hylleraas, 1929) to determine 
the energy eigenvalues of the helium atom has yielded a close agreement 
with the observed properties of the spectrum of helium. 
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The physical system that is described by this Hamiltonian contains the 
Coulomb interaction operator that couples the nucleus to the jth electron 
field, with the (attractive) interaction constant -Ze 2, as well as all of the 
other (repulsive) Coulomb couplings between the remaining electrons of 
the atom and thejth electron. 

Clearly, the eigenfunctions of the preceding operator will depend on all of 
the coordinate vectors (r,, r2,..., r j_,, r j+ i,.-., rn), as well as the coordinates 
rj of thejth electron. The energy eigenvalues of this operator must then be 
labelled, Ej; ,. 2 ..... j-,, ~+, . . . . . .  �9 

The next stepin determining the form of the many-particle eigenfunctions 
follows from the fact that each of the electron solutions (associated with 
each of the indices j) solves an eigenfunction equation that is functionally 
identical to each of the other equations. It then follows that the eigen- 
functions of the operator which is the sum of all such operators, will satisfy 
the continuity equation: 

at [Usl2 + 2~mV" (Us* Vus - UsVUs*) = 0 

We can then take the eigenfunctions of  such a sum of operators (equation 
(4.3')) to be the approximation for the weighting functions in the non- 
relativistic description of the n-electron atom. In the structuring of  these 
weighting functions, all of  the electrons are treated on an equal footing. 
Only the binding to the nuclear Coulomb field is different. Assuming now 
that the nucleus is sufficiently inertial (relative to the electrons' dynamical 
properties) it can be considered as stationary: 

[us(rN) [2 ~ 3(rN) 

We may then treat rN as a constant parameter to represent the distance from 
the origin of the coordinate system to the center of  the binding nucleus. 

5. Another Approximation for the Many-Electron Atom 

In the previous example, as in the one to be discussed now, the atomic 
nucleus may be considered to be dynamically uncoupled from the electrons, 
because of  the large nuclear mass, compared with the electron mass. This 
corresponds to neglecting the nuclear recoil that results from its absorption 
of  energy-momentum from the bound electrons. However, since the 
electrons all have the same mass, one may not uncouple them from each 
other in the same way. It then follows that the weighting function which 
treats the electrons, one at a time, is perhaps not too good a representation 
of the true state of  affairs (as far as the electron system is concerned)--even 
in the nonrelativistic form of the theory. For the many-electron atom, then, 
we wish to consider the better approximation 

{ u s ( n ) ,  us(r2) . . . . .  us(r . )}  - +  u s ( n ,  r2 . . . .  , r . )  

for the various states of the n-electron atom. 
To arrive at the n-electron function on the right, we recognize that the 



A N E W  T H E O R Y  O F  E L E M E N T A R Y  M A T T E R  4 5  

function 1 ~Irk -- rjl in equation (4.3') is a much more slowly varying function 
of  r, than is the (squared) amplitude lus(rk) l 2. Thus we may use the following 
approximation without too much loss of accuracy: 

f [us(rk)[r 1 f [Us(rk)]2 1 
4rrlrk - j[drk---~ ir k - r J  I - ~ a r k - [ r k _ r j  I 

(assuming above that (Us(rk)} are a normalized set of functions). The actual 
justification for this replacement, however (in the Hartree theory as well as 
the theory discussed below), must lie in the success of the predictions of the 
theory. 

With the preceding replacement, then, equation (4.3') takes the following 
form 

1 Ze 2 n 1 1 
~ ~ Vj 2 + e  2 2, - - j u ( r 3 ) =  E2u(rj) fr,,-rA 

(k 4:J) 

One can go about trying to solve this equation, say, for helium, by 
starting with a set of trial solutions u(r~), u(r2), as in the Hartree theory, 
substituting them into the two coupled equations (4.3') for this case, and 
then iterate toward a 'good solution'. An alternate way of  attacking the 
helium problem, to yield solutions of the form u(r~,r2), has been a method 
devised by Pekeris (1958, 1959). He starts with a trial function of three 
independent parameters ~(rl,r2,rl2), solving the sum of two 2-partMe 
operators, as described above. Thus, 

I )/ --2-m l - -~mV2 .At- 1 Z Z E ~b(rl,r2,r,2)=O 

where r~ 2 = I r l  - r21 .  Making the change of variables 

S = ~ ( r  I q-  r 1 2  - -  r 2 )  , / )  = e ( r  2 -t- r 1 2  - -  rl), w = 2E(rl + r 2 - -  r 1 2  ) 

where ~ = v - E ,  and starting with the trial function (with the proper 
convergence properties): 

~b(s, v, w) = exp [--~(s + v + w)] F(s, v, w) 
the 2-body wave equation is then expressed in terms of  these new variables. 
The method of  solution consists in converting the problem of solving the 
two coupled differential equations, for the explicit solutions, into a problem 
of diagonalizing an (arbitrarily large) matrix--yielding the energy eigen- 
values for the system. This is done by substituting the separated trial 
function 

F(s,v, w) = ~, A(l, rn, n)L,(s)Lm(V)L,(w) 
l,m,n 

(in ~b) where Ln is the Laguerre polynomial of  order n, in the two-body wave 
equation. This, in turn, yields a set of recurssion relations between the 
coefficients A(l,m,n), which are a set of  linear algebraic equations. The 
vanishing of the determinant of  these algebraic equations then yields the 
energy eigenvalues for the helium atom. 
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In this way, Pekeris showed that the energy eigenvalues of the low lying 
states of helium are very accurately predicted by a 2-body form of the 
wave equation (4.3'). It agrees with the variational calculation of Hylleraas-- 
but it was carried out to more significant figures with the use of modern 
computing machine facilities. In any case, the close agreement between 
these calculations and the observed spectrum of helium further justifies the 
quantum mechanical expression of this system, along with the preceding 
approximations that were considered. 

The fact that in the nonrelativistic limit, the elementary interaction field 
theory yields precisely the same equation as nonrelativistic quantum 
mechanics for the 'many-body' system, means that Pekeris' result is just as 
much a verification of this theory as it is of quantum mechanics. Neverthe- 
less, when we wish to perfect these results by extension to the relativistic 
region, differences between the predictions of the elementary interaction 
field theory and quantum theory should occur. For in this case, the non- 
linear features of the proposed theory, as well as the appearance of the 
additional (g~-dependent) electrodynamic interaction, should predict 
deviations from what would be expected from the extension of the quantum 
theory to quantum field theory. The latter extension would be in terms of 
the Bethe-Salpeter theory (Bethe & Salpeter, 1957) for the 2-electron 
system, bound to a nucleus. 

Nevertheless, the experimental data, to this time, reveals that the close 
agreement with Pekeris' (or Hylleraas') calculations (that includes the 
insertion of some 'relativistic terms') do not really require extension to the 
domain of quantum field theory in order to explain the low lying levels of 
helium. The study of the bound states of helium, then, is not a very good 
test that could distinguish between the elementary interaction field theory 
and quantum field theory. But this conclusion is not unexpected. It was 
implied earlier by the built-in feature of this theory that its formalism 
approaches that of ordinary quantum mechanics in the nonrelativistic 
limit. 

Relativistic effects of bound systems, that do indeed follow from the 
present field theory, are the features of electron-positron pairs that relate 
to 'annihilation' and 'creation' processes (Part IV, Section 1) and the Lamb 
splitting in the fine structure of hydrogenic atoms (Part IV, Section 2). The 
latter consequences of the present formulation of electrodynamics will be 
seen to follow from the mathematical derivations of a finite and mathemat- 
ically consistent formulation of a relativistic field formalism of the 
elementary interaction theory. 

In addition to these relativistic effects, the possibility also exists that some 
of the features of nonrelativistic quantum mechanics that are normally 
inserted into this formalism when low energy physics is described, may be 
derivable from the exact form of one of the theories--elementary interaction 
field theory or quantum field theory--when they are properly expressed in 
the general form. Indeed, it will be shown below that one important feature 
of the nonrelativistic formalism--the Pauli exclusion principle--can be 
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derived from first principles, as a consequence of the exact nonlinear 
structure of the elementary interaction field theory. 

6. The Pauli Exclusion Principle (Sachs, 1963) 

In making the comparison between the proposed field theory of a closed 
system, and the standard quantum mechanical approach in terms of a 
many-body system, the following question naturally arises: How, within 
the framework of a pure field description of a closed system, does one 
interpret the Pauli exclusion principle, which appears to entail a correlation 
of the positions and momenta of different particles ? 

To answer the question, consider the physical implications of this 
principle. It asserts that two equivalent spin one-half particles cannot 
simultaneously be in the same state of motion--they cannot simultaneously 
be at the same location with the same constants of the motion. Thus the 
conventional form of the quantum theory places a restriction on the 
separate probability amplitudes ~b(mj) (X j) and ~b (m0 (x~) of the trajectories of 
particles (j) and (i). According to the elementary interaction field theory, on 
the other hand, there is only one space-time, x, and an interaction field 
amplitude W(x) that is mapped onto it. As we have indicated earlier, the 
interaction field amplitude is a connective relation between the component 
matter fields, {~b")(x)}--the solutions of the coupled nonlinear field 
equations that we start with. 

One of the restraints on the interaction field amplitude 7t(x) is that it 
expresses the law of conservation of interaction (Part I) in terms of the 
continuity equation 

a"(7~7. 7 ~) = 0 

The time-component 7tToW(X) = W*W(x), whose integral over all space is 
then a constant in time, is a measure of the weighting of the mutual influence 
of all n components of the closed system, at the space-time point x. Within 
this interpretation it follows that if the physical situation should be 
approached that would correspond to an identical vanishing of the field 
amplitude 7 t at all space-time points, we would have to conclude that such 
a physical situation does not relate to any observable. 

It will be shown below that if any two components of a physical system, 
identified with the indices (i) and (j), out of an n-component closed system, 
should have: 

(1) a repulsive interaction, i.e. if e(~)e (j) = +ca; 
(2) the same inertial mass, i.e. A ") = h(l); 
(3) the same state of motion, i.e. 

~(') Yu ~b(')(x) = ~(J) ~'u r (6.1) 
for all x; 

then the contribution of the mutual coupling of(i) and (j) to the interaction 
weighting amplitude for the whole system must be identically zero. 
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The latter result is physically equivalent to the implications of the Pauli 
exclusion principle. It will then be shown that when this exact feature of the 
theory is incorporated with the nonrelativistic approximation for the 
many-particle interaction field amplitude, the latter function must vanish 
identically in the 4n-dimensional space-time of the many-particle system. In 
particular, the latter asymptotic form of the interaction field will be shown 
to be the totally antisymmetrized Schrhdinger wave function for the 
many-fermion system. 

To proceed with this derivation, then, let T~j denote the interaction 
weighting amplitude for a system of coupled components, except for the 
contribution of the coupling (i) +-+ (j). The remaining amplitude will be de- 
noted by ~b~j. To clarify this further, T~j can depend on the field amplitudes 
~(~) and r162 only with respect to their separate couplings to the other 
particle fields of the system. The amplitude Tt~ then omits the contribution 
of the mutual coupling of (i) and (j). If, then, we can find a field amplitude 
r that vanishes under the three conditions mentioned above, then it would 
follow that 7I = T~j and the physical consequences of the Pauli principle 
would result. 

Note that at this stage, we are only assuming that such a field ~b~ exists. 
If no such 'two-body' field exists, then T cannot be broken up into the two 
parts ~ and ~b~j. Nevertheless, we will now see that such a field does indeed 
exist as a feature of the exact form of the coupled field equations. 

To determine the form of ~b~j for the special case under study, we first 
note that if ~jY0~j  = ~b~b~j represents an additive contribution to the 
weighting function for the closed system, then it must, by itself, satisfy an 
equation of continuity: 

Ou(~,j Yu ~b,~) = 0 (6.2) 

We must then seek such a solution ~b~, that depends on the two matter-field 
solutions, ~b(o and ~(J) of the coupled set of nonlinear field equations (1.2) 
that satisfies a continuity equation (6.2) and vanishes identically under the 
special three conditions discussed above. 

Multiplying the ith equation in (3.8) by the (conjugated) solution ~(J) of 
thejth equation, and multiplying the hermitian conjugate of thejth equation 
by Y0 ~ b(~ subtracting these two equations and then repeating the operation 
with (i) and (j) interchanged, the sum of the two resulting equations gives: 

+ r v  = 

+ (A(S) _ A,)) (ff(~) ~b(i) _ if(t) ,~(s)) (6.3) 
where 

R~ = e ~') e ~) f (~(~) ~ ~W) - (b") y~ ~b ~)) S ( x  - x')  d 4 x' 

+ ( e " ) - e  (~)) ~ e(~){f ~(k)yv~b(t~ } (6.4) 
(k ~ ~,j) 
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and 
~ = ( - 1 )  ~ (e")  ~0~J)t - e(J) ~0~m) + (e") - e(J)) y~ ~o~)t (6 .5 )  

k 
(k :t= i , j )  

The right-hand side of equation (6.3) contains three terms, each of them 
vanishing identically under some special conditions. First, if the ith andj th  
interacting components are each related to the same state of motion, i.e. 
under the special condition when equation (6.1) is true, then it also follows 
that 

q~") F~ ~b") = ~(J) F~ ~b(J) (6.6) 

since/'~, are linear combinations of the Dirac matrices. With equation (6.1) 
in equation (6.4), the first term in Rv is automatically zero. 

The spinor form 

of the electromagnetic field equations implies that 

% O"(e (J) V(~ ~) - e (') V(j )) = e (~ e(~)(~ (J) F~ ~h (1) - ~(') F~ @')) (6.7) 

Since we can only accept the particular solutions of  these equations 
(according to their interpretation within this theory (Parts I and II), the 
substitution of equation (6.6) into the fight-hand side of  equation (5.7) 
implies that the only solutions of  this equation must correspond to the 
relation 

e (~ ~ )  - e (0 qo~ J3 = 0 (6.8) 

Thus, with the ith and j th  component fields relating to the same state of  
motion, the first part of ~ in equation (6.5) must vanish. 

Second, if the inertial mass parameters of  the ith and j th  fields are the 
same, the last term on the right-hand side of  equation (6.3) must also 
vanish. 

Finally, the second term on the right-hand side of equation (6.4) and the 
second term on the right-hand side of equation (6.5) involve the coupling of  
the ith andj th  field components, separately, to all of  the other interacting 
components of the system. If the mutual coupling between the ith andj th  
fields is repulsive, i.e. if e C~ e CJ~ = -[-e 2, then it follows that the coupling of  the 
ith and j th  fields to the other fields would have the same sign, i.e. 
e t ~  (k~ = e(J)e (k~. Thus, under these circumstances, the last terms on the 
right-hand sides of equations (6.4) and (6.5) also must vanish. 

Summarizing, when any two, out of an n-component closed system, are 
(1) in the same state of motion, (2) have the same inertial mass, and (3) have 
a repulsive interaction, then Rv, ~b and (;~(~)- 1(J))--and therefore the 
entire right-hand side of  equation (6.3), automatically  vanishes. The following 
equation then results: 

O~(~(J) ~v ~b(o + ~(o yv ~h(~)) = 0 (6.9) 
4 
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If  we now combine this result with the continuity equation for each of the 
separate matter fields (which is, fundamentally, a consequence of gauge 
invariance of the first kind), 

0~(~ c') Yu 4 (~ = 0~(~ (g) Yv ,tb~J)) = 0 (6.10) 

and the requirement of the elementary interaction theory that the description 
must, generally, be symmetric with respect to the interchange 

C (x) r 
the following result is obtained: 

0 [(4 (" i 4, (J)) 7 (q, (') • = 0 

Thus, the solution 4~s of equation (6.2) is 

$,~(• = 4 (`) q- 4 (J) (6.11) 

The only ambiguity that still remains in 4~J is the + or - case. I f  the 
interaction field is, generally, unique, then for the considered situation, only 
one of these signs can be valid, under all conditions. Let us now determine 
which is the valid sign. 

Since both the ith andj th  interacting fields correspond in this case to the 
same state of motion, and have the same separate interactions with the rest 
of the closed system (and also have identical boundary conditions imposed 
by the remainder of the closed system) it follows that in the special case where 
(6.11) is valid, 5b (~ and ~b (J), separately, solve identical field equations with 
the same boundary conditions. Thus, 

4 " ) ( x )  = 

Note that there are not different arbitrary constants multiplying each side 
of this equation because of the special conditions imposed on these 
solutions (in this particular case) and the fact that these solutions solve 
nonlinear differential equations. 

Now if the plus sign in (6.11) is correct, then we must solve for the matter 
field equation 4fi(+) = 2~ (~ to determine the interaction field amplitude. 
However, in this case, this is a solution of the field equation 

O(~b "), 4 (2) . . . .  ,tb(J) = ~b"),... r = 0 (6.12) 

The symbol 0 denotes an integral-differential operator, such as the one that 
appears in equation (3.8), except for the feature that equation (6.12) 
describes a particle to be interacting with itself (as well as with the other 
constituent elements of the dosed system). The acceptance of the solution 
4ij(+) would then be logically incompatible with the initial premise of the 
elementary interaction theory since, as we have argued earlier (Parts I and 
II) such an approach prohibits the appearance of any self-interaction terms. 
To be logically consistent with the initial premise of the theory, we are then 
required to take only the solution 

~b~(-) = ~b (l) - 4 (J) = 0 (6.13) 
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This is the result that was to be proven. It implies that under the special 
conditions on the ith andjth interacting components of the closed system 
that led to the result in equation (6.13), the interaction field amplitude 
7t(x) for the closed system reduces to the interaction field amplitude, 7z~, 
which excludes any contribution from the mutual coupling of the ith andjth 
components of the system. It is then concluded that if any two, (i,j), out of 
the totality of mutually interacting components of a closed system, should 
approach the set of circumstances that correspond to their being in the same 
state of motion, having the same inertial mass, and having a repulsive 
interaction, then there is no possible measurement that can relate to the 
mutual coupling of the ith andjth components of the system. This derived 
conclusion is equivalent to the statement of the Pauli exclusion principle. 

7. Fermi-Dirac Statistics from the Nonrelativistic Approximation of 7 t 

Let us now return to the nonrelativistic approximation (1.5) for the 
interaction field amplitude. In this limit the time coordinate becomes 
a common parameter for all field components and any two factors 
in the products, when they correspond to equivalent states of motion, 
contribute the product 

~b (0) ~b(m~ ~b(mj=mO(rj = rz) (7.1) 

If i and j should represent interacting particles with equal masses and 
mutually repelling forces, then the exact result that was derived in the 
preceding paragraph implies that the product (7.1) is only an approximation 
for the exact solution ~bij(- ). Since the latter was found to be identically zero 
in all space-time, the function .t,(0) in equation (7.1), must actually be a 
non-zero approximation for zero! Finally, since the product function (7.1) 
is a factor that multiplies the product of all other matter fields in the 
product (1.5) for the closed system (in this asymptotic limit), it follows that 
the actual vanishing of ~bl ~ causes the total interaction field amplitude to 
vanish under the same physical circumstances. 

To incorporate this result into the asymptotic interaction field amplitude 
for a system of equivalent 'particles', we must choose the phase in equation 
(1.5) to be 

~e = • ~ exp (i~v) - (-1) P 

In this case, then, an equivalent way to express this approximation for the 
interaction field amplitude is: 

1 ~ " 1 ~b~'(r')" "" ~b('~)(r") 
7 t=  Vn---- ~ ~ (--1) v 1"-[ ~b(m~ : : (7.2) 

,=1 = ~ . l  ~b(m")(rl) ' ' '  ~b('n")(r.) 

which is the usual Slater determinant for the many-body wave function. 
This is the totally antisymmetrized wave function for the many-particle 
system (of spin-one-half particles) that leads to the Fermi-Dirac statistics 
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of an ensemble of indistinguishable objects, implying, e.g., the ordering in 
the periodic table, the properties of metals, etc. 

Even though the interaction field ampfitude (7.2) is identical with the 
many-body wave function for a system of noninteracting, indistinguishable 
particles (fermions), it should be noted here that the interpretation of this 
theory is not in terms of particles (separate 'things'). The statistical aspect 
appears in this theory only because we are using a limiting formalism in 
which the coupled fields that describe interacting matter, appear to be 
uncoupled in a first approximation. The Pauli exclusion principle, on the 
other hand, deals with the features implied by a particular state of mutual 
interaction--independent of approximation. 

In quantum field theory, the Pauli principle automatically implies 
Fermi-Dirac statistics--in an exact sense. This is because the latter is a 
particle theory from the outset. In the present interaction field theory, on 
the other hand, the individual particle aspects are only the manifestation 
of an asymptotic description of a closed system, corresponding to the 
(unattainable) limit of no interaction between the component matter fields 
of the system. Thus, Fermi-Dirac statistics appears within this theory only 
as an approximation to describe a closed system in terms of fields that are 
very weakly coupled. This approximation should be valid only when the 
quantities of momentum-energy transfer within the closed system is 
nonrelativistic. Combining this requirement on the interaction field 
amplitude with the previously derived 'Hartree approximation', we have 
the Hartree-Fock formalism. 

To sum up, it has been demonstrated in this paper how the general 
mathematical structure of this theory, shown earlier to be necessarily and 
uniquely implied by its axioms, leads to a formalism that approaches that 
of quantum mechanics, in the limit of sufficiently small energy-momentum 
transfer within the closed system that is asserted. Thus, all of the predictions 
of nonrelativistic quantum mechanics are also predictions of this theory. 
Yet this theory is conceptually different from the quantum theory--in 
contrast, this theory is based on the continuous field concept to describe a 
single closed system (rather than many particles), it is deterministic and it 
is fundamentally nonlinear. 

An exact derivation from the formal structure of this theory leads to a 
result that is physically equivalent to the Pauli exclusion principle. It is 
important that this result is sensitive to features of this theory that are 
absent in the conventional approach (quantum mechanics). It is shown that 
the Fermi-Dirac statistics of 'particles' follows here as a linear 
approximation to the exact nonlinear theory. 
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